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Abstract
Finite-temperature micromagnetics simulations are employed to study the
magnetization-switching dynamics driven by a field applied at an angle to the long axis of an
iron nanopillar. A bimodal distribution in the switching times is observed, and evidence for two
competing modes of magnetization-switching dynamics is presented. For the conditions studied
here, temperature T = 20.2 K and the reversal field 3260 Oe at an angle of 75◦ to the long axis,
approximately 60% of the switches involve unstable decay (no free-energy barrier) and 40%
involve metastable decay (a free-energy barrier is crossed). The latter are indistinguishable from
switches that are constrained to start at a metastable free-energy minimum. Competition
between unstable and metastable decay may not be confined to the temperature studied in this
paper, and could greatly complicate applications involving magnetization switching near the
coercive field.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nanoscale magnetic devices play important roles in many
applications, including sensor technology and magnetic
recording. The design process of these devices may rely on
micromagnetic simulations that represent such systems with
the appropriate resolution, i.e., preserving the actual physical
dynamics while maintaining a reasonable simulation effort.
This has historically been achieved through the use of semi-
classical equations that govern the motion of individual spins
on a lattice mapped from a physical magnetic system. In
our work, the Landau–Lifshitz–Gilbert (LLG) equation [1]

provides such dynamics for the spins and includes finite-
temperature effects by incorporating a stochastic field that
obeys a fluctuation-dissipation relation.

Here, a high-resolution model of the magnetization
switching of an iron nanopillar is presented. When subjected to
a magnetic field of magnitude near the coercive limit, obliquely
aligned with respect to the pillar’s axis, a bimodal distribution
of switching times is observed [2]. This is a feature which
may have important ramifications for the application of such
nanopillars in real-world devices, which typically rely on a
single, consistent decay mode. Other, lower-resolution models
of the same physical system also exhibit bimodal switching-
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time distributions, however the mechanism leading to this
behaviour is different in each model and depends on the
resolution of the computational lattice [3]. For the lowest-
resolution model, a single macrospin, bimodal switching times
are the result of the spin precessing close to the magnetization
value that constitutes our definition of a switching event, which
sometimes cause switching to occur early due to thermal
fluctuations. Bimodal switching times seen in a medium-
resolution model, a spin chain, depend on whether one end
of the pillar switches or both ends switch at the same time.
Trials that involve both ends switching have a change in
total magnetization that occurs roughly twice as fast as those
with only one end switching. Consequently, lower switching
times are observed for switching that happens at both ends
concurrently. Further results for the low- and intermediate-
resolution models are reported in [3].

Simulations in this paper are performed only for our
high-resolution model with a spatial discretization of the
order of the exchange length, which enables magnetization
configurations that are nonuniform in all three directions of the
pillar. The complex magnetization dynamics of this highest-
resolution model, discussed in the present paper, preclude
a simple description of the mechanism leading to bimodal
switching times. This is additionally complicated by the
large computational resources needed to generate an adequate
statistical picture of the behaviour across a large parameter
range. Instead, the high-resolution model is explored here
at a specific applied field while generating a large amount of
statistics in order to probe the switching mechanism in greater
detail. The validity of this approach lies in the fact that, for
each of the lower-resolution models, the mechanism leading to
bimodal switching times is the same across a large range of the
applied field space.

For a bimodal switching-time distribution, the traditional
picture of a single free-energy barrier which must be crossed,
often used to describe the decay of a metastable state, appears
to be insufficient. Furthermore, even a more complicated free-
energy surface simulated without random noise, i.e. at zero
temperature, would not be able to show the two modes of
switching demonstrated for these nanomagnets. Therefore,
we analyse the bimodal switching behaviour of simulated
nanopillars with a high-resolution model at finite temperature
using information from temporal phase portraits, and we also
apply absorbing Markov-chain techniques [4–9] to transition
matrices obtained from the simulations.

The rest of this paper is organized as follows. We
first present the computational model and implementation of
the LLG equation in section 2. Section 3 is divided into
three parts, which collectively discuss results obtained from
the simulations. Section 3.1 explores the phase portraits
of the energy during switching, while sections 3.2 and 3.3
provide information about the free energy of the system based
on analysis of transition matrices and projective dynamics,
respectively. Conclusions are presented in section 4.

2. Model and numerical method

The numerical model is motivated by nanopillars fabricated
by von Molnár and collaborators [10, 11]. Using scanning-

tunnelling-microscopy-assisted chemical vapour deposition,
they constructed elongated iron nanoparticles, each approx-
imately 10 × 10 × 150 nm3. Their results indicated that
the field-driven magnetization switching in these particles
at field strengths near the coercive field is initiated by
localized nucleation, involving thermal activation over a
free-energy barrier [12–15]. This is expected for systems
whose dimensions are large enough to support a nonuniform
magnetization [16, 17], in contrast to the single coherent
rotation mode assumed for smaller particles via the Stoner–
Wohlfarth model [18–20].

In order to numerically investigate these nanopillars,
a coarse-grained, cubic computational lattice is used, in
which each cell represents the net magnetization of the
corresponding volume in the physical system. To ensure that
the magnetization density is uniform at length scales below
the cell volume, the lattice spacing is chosen smaller than
the exchange length of 2.6 nm, obtained from the material
properties of bulk iron [21]. This criterion yields a regular
lattice with the dimensions 6 × 6 × 90 (Ns = 3240 spins,
�x = 1.6667 nm), which has a single classical Heisenberg
spin at the centre of each site. The time evolution of this spin,
�m(�ri), is controlled by the LLG equation [1, 22, 23],

d �m(�ri )

dt
= − γ0

1 + α2

×
(

�m(�ri ) ×
[

�H (�ri ) + α

ms
�m(�ri ) × �H(�ri )

])
, (1)

which updates every site on the lattice at each computational
time step. At each site i , the local field �H(�ri ) determines
the direction of change of the magnetization �m(�ri ) during
the next integration step. The parameters γ0 = 1.76 ×
107 Hz Oe−1, ms = 1700 emu cm−3, and α = 0.1 represent
the electronic gyromagnetic ratio, the saturation magnetization
of bulk iron, and a phenomenological damping parameter,
respectively. Values for these parameters are consistent with
the material properties of bulk iron, and are discussed in
previous work [2, 21, 24]. The total local field, �H(�ri ), is a
sum of the individual fields, which include the dipole field �H D,
the uniform applied (Zeeman) field �H Z, and the exchange field
�H E [21].

Only nearest-neighbour interactions are considered for
the exchange field �H E, while the long-range dipolar
interaction, �H D, couples all computational cells to each
other. Consequently, the dipolar term constitutes the largest
computational task during an integration step of the simulation,
scaling as O(N2

s ) for a brute-force calculation. This term
is reduced to a linear dependence on the number of cells,
Ns, by using the fast multipole method [21, 25], resulting in
simulation rates of approximately 0.041 ns/CPU-hour on a
Dual-Core 2220 2.8 GHz Opteron processor with 2 GB RAM
per core using the C++ Psimag library [26]. This equates to
approximately 26 000 CPU-hours for the 100 trials discussed
in the following sections.

The temperature is set to 20.2 K, and is included
in the simulation through the stochastic field �H T, whose
components are Gaussian distributed with mean zero and
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Figure 1. Schematic of pillar magnetization (small arrows, black online) and the uniform applied field (large arrows, red online) at different
times during a trial. In these images, the z-axis (up-down) has been compressed to about one-third of the original height. (a) Initially, at
t = −0.25 ns, the magnetization is aligned with the long axis of the pillar and the applied field has a value of 3260 Oe, oriented at 75◦ with
respect to the long axis. (b) Some time later, at t = −0.125 ns, the magnetization is relaxed and the applied field begins its sinusoidal reversal
as described in section 2. (c) The field reversal is complete at t = 0 ns. (d) The final equilibrium of the simulation after magnetization
switching has occurred. (e) Snapshot of a pillar endcap while in the metastable state, corresponding to the schematic of (c). Lines in this
snapshot trace out the interpolated, continuous magnetization and are colour-coded by mz . The scale is up (dark grey, or dark red online) to
down (light grey, or light blue online). The waviness of the lines indicates the presence of thermally excited spin waves.

variance determined by the fluctuation-dissipation relation,

〈H T
β (�ri , t)H T

γ ( �r j , t ′)〉 = 2αkBT

γ0msV
δi jδβγ δ(t − t ′), (2)

where kB is Boltzmann’s constant, V is the volume of an
individual computational cell, T is the absolute temperature,
δi j and δβγ are Kronecker deltas over the lattice sites i, j and
directions β, γ , respectively, and δ(t − t ′) is a Dirac delta
function of the time difference, t − t ′. This equation implies
that the magnitude of the thermal field scales linearly with the
square root of the temperature. The details of the integration of
the stochastic field are discussed in [21].

The simulation begins with the pillar in an applied field
of magnitude 3260 Oe and angle 75◦ with respect to the long
axis of the pillar (figure 1(a)). Once equilibrated, most of
the spins are relaxed in the direction of the initial applied
field (figure 1(b)). The value of the applied field is then
changed sinusoidally over a time period of t = 0.125 ns
and is finally anti-parallel to the initial field, i.e., �H Z(t) =
�H Z
0 cos(π t/0.125 ns) with t ∈ [−0.125 ns, 0]. For t >

0, �H Z(t) = �H Z
0 and remains constant with a negative z-

component (figure 1(c)). This field reversal protocol prevents
the Zeeman energy from excessively exciting the system.
Also shown in figure 1 is the typical high-curl magnetization
configuration of the endcap (e), which occurs after the field
reversal (c), but before switching occurs.

3. Numerical results

Under the conditions described in section 2, N =
100 magnetization-switching simulations were performed.
The switching-time ts is defined as the first-passage time

to the z-component of the total magnetization Mz =
(1/(Nsms))

∑
i mz(�ri ) � 0, with time measured from the

completion of the field reversal. From these 100 trials,
the cumulative distribution of the switching times, shown in
figure 2(a), indicates at least two characteristic timescales and
the existence of more than a single switching path. About 60%
of the simulations (59 runs) switched almost immediately (ts <

2.1 ns), while the remaining 40% (41 runs) exhibited switching
times ts > 2.5 ns and up to an order of magnitude larger.
Since direct comparison of the magnetization of individual
runs did not reveal any obvious differences in the switching
mechanism, the trials are divided into two groups based only
on the location of the sharp corner of the cumulative switching
probability in figure 2(a). Located near the probability 0.6, this
corner provides a clear distinction between two characteristic
groups of switching times in the distribution. These two
groups are labelled as ‘fast’ decay (ts < 2.5 ns) and ‘slow’
decay (ts � 2.5 ns). Below we show that the slow-mode
statistics are the result of a process which must traverse a free-
energy landscape characterized by a metastable well that the
system must escape to reach the lowest available free-energy
state. This is accomplished by the collective effect of many
random thermal fluctuations that eventually cause the system
to surmount the free-energy saddle point that separates the
metastable well from the global free-energy minimum. The
fast-mode statistics, however, reveal a switching path in the
free energy that completely avoids the metastable well, as will
be shown in sections 3.2 and 3.3.

Based on the shape of the cumulative distribution for
each mode (figure 2), an exponential form is assigned to
fit the switching-time probability density function (pdf). To
find the lifetime, τ , of each mode, the mean switching-
time, 〈ts〉 = (1/N)

∑
i tsi , and the standard deviation,
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Figure 2. Cumulative switching-time distribution for all 100 full
runs, with only the fast mode shown as an inset (a) and a comparison
of quenched-relaxed and slow runs (b). It is clear from (a) that at
least two characteristic timescales are present in the switching
statistics for this system. From the measured lifetimes of the trials,
the maximum-likelihood estimate for the lifetime, τ , is τ = 0.5 ns
for the fast mode (59 trials), τ = 21.7 ns for the slow mode (41
trials), and τ = 17.7 ns for the QR trials (40 trials). See table 1 for a
summary of the lifetime measurement results. The fitted expressions,
D(t) = η(t − t0)(1 − exp(−(t − t0)/τ)), where η is the Heaviside
step function, are also shown for the separated sets of data.

σs = √
(1/(N − 1))

∑
i(tsi − 〈ts〉)2, are determined from the

empirical data. The delayed exponential, f (t) = η(t −
t0)(1/τ) exp(−(t − t0)/τ ), where η is the Heaviside step
function and t0 = min[min{tsi }, 〈ts〉 − σs], is used as the pdf.
We found good agreement between the fitted expression and
the empirical data with a corresponding one-sided Kolmogorov
rejection probability [27] of 0.12 and 0.07 for the slow and fast
modes, respectively. Once the delay time t0 was determined,
our estimate for the lifetime was found as τ = 〈ts〉 − t0.
The slow-mode lifetime from this estimate is τ = 21.7 ns,
with a corresponding t0 = 2.6 ns. The results for the slow-
mode switches are shown in figure 2(b) and table 1, with τ for
the slow mode close to other estimates that will be discussed
below. In comparison, the lifetime for the fast mode is τ =
0.5 ns, with t0 = 0.6 ns.

In addition to the above switches, 40 separate simulations
were also completed under conditions identical to the previous

Table 1. Lifetimes were obtained by the following methods: 〈ts〉 is
the empirical mean obtained from the switching times of the actual
simulations, and σs is the corresponding standard deviation. For the
slow and QR modes, characterized by the pdf
f (t) = η(t − t0)(1/τ) exp(−(t − t0)/τ), t0 is found from
min[min{tsi }, 〈ts〉 − σs], and τ = 〈ts〉 − t0. τEV is obtained from the
eigenvalues of the transition matrix (section 3.2). τRT is found from
the residence times of the projective dynamics (PD) analysis
(section 3.3).

Fast mode (ns) Slow mode (ns) QR (ns)

〈ts〉 1.1 24.3 19.1
t0 0.6 2.6 1.4
σs 0.4 20.7 17.0
τ 0.5 21.7 17.7
τEV 0.2 22.8 17.9
τRT 1.3 24.8 19.7

ones except for the details of the initial magnetization and
field reversal. The initial magnetization of these runs was
determined by quenching one slow-mode configuration to 0 K
while in the metastable well, without changing the field. The
new simulation began by rethermalizing, again setting the
temperature to 20.2 K. From this time on (t = 0), the
simulations were carried out identically to the previous 100
trials. We call this the quenched-relaxed procedure (QR). The
reasons for adopting it are explained in section 3.1. Along
with the slow mode, the cumulative distribution of lifetimes for
these QR runs is shown in figure 2(b), with τ = 17.7 ns, σs =
17.0 ns, and t0 = 1.4 ns used for the delayed exponential and a
corresponding one-sided Kolmogorov rejection probability of
0.18.

3.1. Phase portraits

Phase plots of the energy also provide information about the
behaviour of the simulated nanopillar system. Such plots are
shown in figure 3, with the energies due to dipolar and Zeeman
contributions on separate axes. The collection of all runs
belonging to a particular mode are shown in the background
of each plot, with a single run overlaid on top. For the
fast (a) and slow (b) modes, the simulations begin near the
top of the plots, where the density of points is low. During
the initial relaxation of these simulations, both modes evolve
down and to the right (i.e., decrease in Zeeman energy EZ

(also a decrease in Mz ∈ [−1, 1], the z-component of the total
magnetization) and increase in dipolar energy). The obvious
difference between plots (a) and (b) is the path that each takes
near the metastable well (EZ ≈ −1240 erg cm−3, Mz ≈ 0.72)
and saddle point (EZ ≈ −1450 erg cm−3, Mz ≈ 0.66),
determined by projective dynamics in section 3.3. The slow-
mode trajectories proceed to the metastable well which can be
seen in plot (b) as the large dark region in the centre of the
plot. For the slow mode, the simulation spends most of its
time here. However, the fast-mode events ignore this attractor
almost completely, mostly slowing down only near the saddle
point. This is not unreasonable, since the free energy near the
saddle point necessarily has a small gradient, and the driving
force is therefore weak. Both modes continue the switching
process toward the global free-energy minimum located below
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Figure 3. Phase plots in the space of dipolar and Zeeman energies for 59 runs belonging to the fast mode (a), 41 runs belonging to the slow
mode (b), and 40 runs belonging to the quenched-relaxed trials (c). The lighter background (red online) is the collection of all runs belonging
to a particular mode, while the darker path (black) represents a single run. Also shown on the EZ axis is the location of the metastable well
(horizontal dotted line) and saddle point (horizontal dashed line), determined in sections 3.2 and 3.3. Arrows indicate the average direction of
motion of the phase portrait.

the displayed portion of the phase portraits. These results
suggest that the difference between the fast and slow modes
is the visitation of the metastable well by the slow mode. This
is further supported by the QR simulations.

To investigate the properties of the metastable free-
energy well, several randomly chosen trials from the
100 simulations were quenched and rethermalized to force
metastable behaviour. Quenches initiated at values of EZ

higher than the saddle point (≈−1450 erg cm−3) equilibrated
to a common T = 0 K metastable configuration located more
negative than ED ≈ −5200 erg cm−3 along the dipolar axis
of figure 3(c) (not visible), representing the common initial
configuration for all QR trials. This T = 0 K configuration
was consistently reached by all chosen trials belonging to both
the slow and fast modes and from various values of EZ >

−1450 erg cm−3 during the switching process. The resulting
initial configuration quickly proceeds to the T = 20.2 K
metastable well when thermalized. Other quenches, which
were initiated at values of EZ below the saddle point, settled
into configurations near the T = 20.2 K final absorbing state
and were not used in the QR trials.

Since the QR simulations necessarily start in the
metastable well, they do not have the same behaviour as the
fast and slow modes during the rethermalization. They also
omit the configurations EZ > −1100 erg cm−3 which occur at
early times for the slow and fast modes. However, ignoring
this initial relaxation, they produce phase plots that closely
resemble those for the slow mode. The similarity of the
phase plots suggests the QR simulations and the slow mode
may also share other features, which are explored in the next
subsections.

Also interesting is the large change with T in the phase
space location of the metastable state in the QR simulations
upon rethermalization. It indicates that the entropy S, which
enters the free energy F as F = E − T S, has a large influence
on the free energy of the system. This observation is further
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Figure 4. Total energy E as a function of time for a single run
belonging to the slow mode and a single run belonging to the fast
mode. Near t = 0, the total energy quickly decreases as the system
initially relaxes. After this, the average value of the total energy
remains constant, except for small fluctuations, until the saddle point
is crossed.

seen in figure 4, which plots the total energy E of the system
as a function of time. Ignoring the fast relaxation following
the field reversal, E is nearly the same for both fast and slow
modes, remaining constant (except for small fluctuations) until
the saddle point is crossed. Since the total energy is nearly
the same for both modes, entropy must largely account for the
differences in behaviour that define the slow or fast relaxation.

3.2. Transition matrix

Although the phase space in these simulations is very large
(2Ns dimensions), it appears from the phase plots in figure 3
that the evolution of the system along the Zeeman energy
coordinate, EZ, can approximately describe the process of
magnetization switching. To investigate the possibility of

5



J. Phys.: Condens. Matter 22 (2010) 236001 S H Thompson et al

a one-dimensional description of the switching process, this
coordinate was discretized into 400 equal-sized bins for the
transition matrix analysis of this section. Individual bins
are labelled by the index i = 1, . . . , k. We found the
results of this section to be approximately independent of the
axis discretization, and we therefore use 400 bins since it
provides numerically stable results for all of the Markov-chain
techniques of this section. Each measurement of EZ during the
simulation corresponds to a particular bin i , and this discretized
state can be represented by a unit vector 〈î | consisting of one
in the i th position with all other elements equal to zero.

The matrix, M, of transition probabilities between states is
also constructed by sampling the series of EZ values during the
simulation. Individual elements of the transition matrix, Mi j ,
are obtained by enumerating the single transitions from bin j
to bin i corresponding to a time step, �t ≈ 3.3 × 10−4 ns,
equal to the measurement interval during the simulations, and
normalizing such that

∑
j Mi j = 1. Thus, the probability of

going from 〈î | to 〈 ĵ | in one time step is given by the matrix
element Mi j with the result that,

〈u(t + �t)| = 〈u(t)|M, (3)

where 〈u(t)| = ∑
i 〈u(t)|î〉〈î | = ∑

i pi(t)〈î | is the row
vector representing the probability that EZ is in bin i at time
t . Therefore, M provides the average change in the state of the
system after one time step [4]. These transition probabilities
are estimated by combining statistics from all individual runs
belonging to a particular mode (fast, slow, or QR).

Since on average the time evolution of the simulation
decreases EZ, the system begins in state 〈k̂| and ends when the
absorbing state 〈1̂| is reached and Mz � 0 (the z-component of
the total magnetization is �0). From this condition, the matrix
element M11 = 1 signifies this absorbing state. The transition
matrix representing this absorbing Markov-chain thus has the
form [5],

M(r+s)×(r+s) =
(

Ir×r 0r×s

Rs×r Ts×s

)
. (4)

Here, I is an identity matrix which, in general, represents r
absorbing states (here, r = 1). R is the recurrent matrix,
which describes the probability of moving into the absorbing
state from any other state, 0 is a null matrix, and T is the
transient matrix, which describes the evolution of the system
before absorption.

By this construction, M is a non-symmetric, regular, non-
negative square matrix with row sums equal to one and with
different left and right eigenspaces. The Perron–Frobenius
theorem [5] provides a general property for this type of
matrix, namely that there exists a unique eigenvalue of M
equal to unity, which is larger than the magnitudes of all
other eigenvalues of M. For our matrix, the left eigenvector
associated with the largest eigenvalue of M is 〈λ1| = 〈1̂| =
(1, 0, 0, . . . , 0). This represents the probability distribution
characterizing the absorbing state.

The other eigenvalues of M correspond to decaying
deviations from the equilibrium distribution since 〈λ1|M =
〈λ1| and

〈λα|M = λα〈λα| (5)
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Figure 5. Probability distributions obtained from the eigenvectors
corresponding to the second largest eigenvalue for the fast and slow
modes and the QR simulations. In this figure, the Zeeman axis has
been discretized into 400 bins. We found the probability densities to
be approximately independent of the discretization. These
distributions are constructed from all the data belonging to each
mode, as discussed in section 3.2. The slow and QR distributions
have a well-defined peak at the location of the metastable free-energy
well, with the QR distribution almost hidden behind the slow-mode
result. The fast mode, however, is quite wide with an approximately
uniform probability density below the free-energy saddle point in the
Zeeman energy (see section 3.3), and close to zero above. The cutoff,
Mz = 0, corresponds to EZ ≈ −2200 erg cm−3.

with 0 < |λα| < 1. Here 〈λ1| = 〈1̂| denotes the dominant
left eigenvector of M, and 〈λα| is any other left eigenvector
of M with eigenvalue λα . As a consequence of the above, the
weights of all left eigenvectors of M except 〈λ1| will decay to
zero under repeated applications of M since 〈λα|Mn = λn

α〈λα|.
Equations (3) and (5) together are used to find the lifetime τ of
the αth eigenstate, with the result that,

〈λα(t)| = λt
α〈λα(0)| ≈ e−(1−λα)t 〈λα(0)|. (6)

Since 〈λ2| corresponds to the second longest-lived state of the
system, τEV = 1/(1−λ2) approximates the average lifetime of
the metastable state of the system in units of the measurement
time resolution, �t .

A probability distribution representing the metastable state
can be built from a properly normalized linear combination
of 〈λ1| and 〈λ2|, 〈meta| = 〈λ1| + b〈λ2|, with λ2 well
separated from λ3. Here, the scaling constant b constrains
the resulting vector to have zero weight in the absorbing state
and ensures that the probability is normalized (

∑
i 〈meta|î〉 =

1). As can be seen in figure 5, the slow and QR metastable
state probability distributions found using this method have a
similar shape and exhibit peaks revealing the location of the
metastable free-energy well. The location of these peaks agree
with the phase portrait results of section 3.1 for the longer-
lived trials and clearly pinpoint the free-energy minimum
along the Zeeman axis. The fast mode, however, does not
have a dominant peak in the probability distribution that
might be expected based on the phase portraits. Rather, the
probability density is close to zero near the metastable free-
energy well and spread out along the remainder of the axis.

6
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This may indicate the sub-dominant eigenvalue is not well
separated from the rest of the eigenvalue spectrum and that the
probability densities associated with these shorter transients
are also important. Nevertheless, these results reinforce the
conclusion that the fast-mode switches simply do not fall into
the metastable well.

3.3. Projective dynamics

The transition matrix of section 3.2 accounts for all transitions
that may occur from a given bin, potentially with all elements
of the submatrices R and T non-zero. However, if the
bin sizes are chosen sufficiently large, the matrix becomes
tridiagonal. To satisfy this condition, 200 equal-sized bins are
used and the one-dimensional description of the magnetization
switching becomes a one-step Markov process [4]. Using this
single, coarse-grained variable, the projective dynamics (PD)
method [4, 6–9] can be used to measure the growth
probabilities PG and shrinkage probabilities PS of the stable
phase along this coordinate. Once obtained, several properties
of the projected free energy F(EZ) can be measured via PG and
PS. A key advantage of the PD technique is that it provides
information about the location of the saddle point in the free
energy. This is generally a difficult feature to extract, as the
statistics in this region are usually sparse.

The PD method is implemented as follows. First, the
EZ axis is broken into a number of bins, as described for
the transition matrix approach in section 3.2. The bin size
is determined such that each time step is only capable of
moving the system between adjacent bins, corresponding to
discretizing the EZ axis into 200 bins for the PD analysis.
Histograms of PG(EZ), PS(EZ), and the probability to stay in
the same bin, PN (EZ), keep a record of the changes along the
axis and are updated at each measurement. Once completed,
the histogram is normalized so that PG(EZ) + PS(EZ) +
PN (EZ) = 1.

For the present nanopillar simulations, we attempted to
use as the slow (binned) variables the Cartesian components
of the total magnetization, as well as other contributions to
the total energy. However, the Zeeman energy provided
the clearest crossings of the probabilities for the projective
dynamics technique. This is reasonable since it provides the
closest correspondence to the path observed in figure 3.

Points along EZ where PG = PS define local extrema
of the free energy. This is true since PG > PS implies
dF/dEZ > 0 and PS > PG implies dF/dEZ < 0. For
our system, which has a single metastable free-energy well,
these extrema represent the location of the metastable well, the
saddle point, and the true equilibrium in the free energy. The
latter is not observed in our simulations due to the cutoff at
Mz � 0.

Figures 6(a) and (b) show PD plots for the fast and slow
modes, respectively. Each plot contains the data of all the
runs belonging to each mode (points), which have then been
smoothed using a five-point running average (solid curves).
The location of the metastable free-energy well for the slow-
mode switches (first crossing from the right in figure 6(b),
EZ ≈ −1240 erg cm−3, Mz ≈ 0.72) coincides with the peaks

0

0.1

0.2

-2000 -1800 -1600 -1400 -1200 -1000

Zeeman energy [erg/cm
3
]

0

0.1

0.2

P
ro

ba
bi

lit
y

Growth
Shrinkage

Fast mode

Slow mode

(a)

(b)

Figure 6. Projective dynamics results for the two modes, fast (a) and
slow (b). The slow mode exhibits clear crossings of the growth and
shrinkage probabilities, indicating extrema in the free energy,
corresponding to the metastable well (right) and the saddle point
(left). Conversely, the probabilities for the fast mode only nearly
overlap in this same region. The solid curves are five-point running
averages.

present in the probability distribution for the longer-lived trials,
figure 5, of section 3.2. Further left, the second crossing in
figure 6(b) indicates the saddle point in the free energy, which
is located at EZ ≈ −1450 erg cm−3, Mz ≈ 0.66. The
locations of both the metastable well (first crossing from the
right) and the saddle point (second crossing from the right) are
obvious for the slow mode. This is expected since the results
of section 3.2 indicate true metastable behaviour.

From our data, the lowest growth probability, PG, for
the fast mode occurs around EZ = −1450 erg cm−3, Mz ≈
0.66 which is identified as the location of the saddle point
in the free energy from the slow-mode statistics. Here, fast
switches proceed through a region of the free-energy landscape
with a small, but negative slope. Along with the results of
the probability distributions, this indicates the absence of a
metastable state in the fast mode. These results agree with the
probability distributions (figure 5) obtained from the transition
matrices of section 3.2, as well as provide information about
the location of the saddle point in the free energy.

The PD results of the quenched-relaxed system can be
compared to the slow modes. As seen in figure 7, the QR
system and the slow-mode probabilities near the metastable
minimum cross at nearly identical values of EZ. The PD
technique reveals that the slow mode and QR trials not only
share similar locations of the free-energy metastable well, but
also pass through saddle points that look nearly identical in this
projected space.

Together, the PD results and the probability distributions
imply that, once in the metastable well (the slow and QR
decays), the system must be thermally activated to overcome
the free-energy saddle point. On the other hand, these results
indicate that if the metastable well is avoided (the fast mode),
the system only has to traverse a relatively flat free-energy
landscape to switch.

Lifetimes can be calculated easily from the results of the
PD technique [4] and compared to those obtained from other

7



J. Phys.: Condens. Matter 22 (2010) 236001 S H Thompson et al

0

0.1

0.2

-2000 -1800 -1600 -1400 -1200 -1000

Zeeman energy [erg/cm
3
]

0

0.1

0.2

P
ro

ba
bi

lit
y

Growth
Shrinkage

(a)

(b)

Slow mode

QR

Figure 7. Projective dynamics results for the two modes, slow and
quenched-relaxed (QR). It is easy to see that these simulations share
the same statistical behaviour in this region, including nearly
identical crossing values (which are locations of the extrema of the
free energy). As with figure 6, the solid lines represent five-point
running averages.

techniques used in this paper. The residence time for each bin,
h(i), is defined as the average time spent in state i . In addition,
PG(i)h(i) is the average number of times the system moves
from state i to i − 1 (the absorbing state is state one). If the
system is to reach the absorbing state exactly once, then

PG(i)h(i) − PS(i − 1)h(i − 1) = 1 (7)

must be true. Since the absorbing state has zero shrinkage
probability, PS(1) = 0, the residence time of the previous state
can be found by h(2) = 1/PG(2). This leaves an iterative
solution for the remaining states,

h(i) = 1 + PS(i − 1)h(i − 1)

PG(i)
. (8)

Consequently, the average lifetime of the process is the sum of
the residence times, τRT = ∑

i h(i).
A summary of the lifetimes obtained by all the techniques

used in this paper is provided in table 1. We expect some bias in
the lifetime data due to the artificial cut made when sorting fast
and slow modes. Trials with lifetimes <2.5 ns are considered
fast modes, although there is some probability that they may
belong to the slow mode, albeit with a short individual lifetime.

Differences between τEV and the other measurements of
the fast-mode lifetimes may be due either to statistical error,
which is not included in the transition matrix associated with
τEV, or to the analysis of a single eigenmode not being
sufficient for the fast mode. The latter may be particularly
important since the eigenvalue spectrum for the fast mode is
very closely spaced below the largest eigenvalue. We expect
the slow and QR lifetimes obtained from the eigenvalues of the
transition matrix to be more robust against this error, due to the
larger amount of statistics gathered from longer runs.

Measurements of the QR lifetime yield slightly shorter
values than for the slow-mode measurements from the full
simulation. This is expected since the QR trials begin

close to the bottom of the free-energy metastable well upon
rethermalization and consequently do not include relaxation
into this area.

In addition, the lifetime measurements obtained from the
residence time for all modes show slightly larger values. Since
this is a sum of the average time spent in all states for each
mode, this method includes the initial t0, which is subtracted
from 〈ts〉 to give τ . After considering the biases associated
with each measurement technique, the lifetimes agree very
well with one another and reinforce the choice of using the
Zeeman axis as the projection variable.

4. Conclusions

We have studied the magnetization-switching properties
of a simulated iron nanopillar motivated by experimental
research [10, 11]. Under the realistic physical conditions
described here, we found the presence of more than one
characteristic switching-time, which were labelled as ‘fast’ and
‘slow’ modes. Through phase portraits and numerical results
provided by transition matrices and the projective dynamics
method, differences between these two modes were identified.
Our results indicate that the fast mode is associated with
switching dynamics that do not carry the system through a
deep metastable well. This idea is supported by data from
separate simulations in which the system was quenched to 0 K
while near the metastable well and then rethermalized. These
quenched-relaxed simulations also indicate that the entropy
provides a large contribution to the free energy of the system.
Using transition matrices obtained from the average behaviour
of each mode, we also constructed projective dynamics plots
and metastable probability distributions which further provide
evidence that the fast mode does not encounter a metastable
free-energy well and evolves across a relatively flat free-
energy landscape. In addition, lifetimes were obtained by
measurement, by fitting to the cumulative distribution, by sub-
dominant eigenvalues, and by residence times from projective
dynamics as reported in table 1. Lifetime values also help
to ensure that an appropriate axis was chosen to project the
dynamics of the system onto for the analysis of sections 3.2
and 3.3.

We have extended the scope of these results in other
work [3] by comparing bimodal switching behaviours of
models with lower lattice resolutions. The results suggest
bimodal switching-time distributions at the lower resolutions
are caused by different mechanisms. The present high-
resolution results predict multiple switching mechanisms that
rely on nonuniform transverse magnetization that may exist in
physical nanopillars and are not seen in the lower-resolution
models. These results may be verified experimentally and may
have important ramifications for technological applications
that rely on a single, consistent switching mode, such as
memory devices.
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